On efficient calculations for Bayesian variable selection
نویسندگان
چکیده
We describe an efficient, exact Bayesian algorithm applicable to both variable selection and model averaging problems. A fully Bayesian approach provides a more complete characterization of the posterior ensemble of possible sub-models, but presents a computational challenge as the number of candidate variables increases. While several approximation techniques have been developed to deal with problems that contain a large numbers of candidate variables, including BMA, IBMA, MCMC and Gibbs Sampling approaches, here we focus on improving the time complexity of exact inference using a recursive algorithm (Exact Bayesian Inference in Regression, or EBIR) that uses components of one sub-model to rapidly generate another and prove that its time complexity is O(m2), where m is the number candidate variables. Testing against simulated data shows that EBIR significantly reduces compute time without sacrificing accuracy, while comparisons to the results obtained by MCMC approaches on the Crime and Punishment data set show that model averaging yields improved predictive performance over two model selection approaches. In addition, we show that finite mixtures of centroid solutions provide a means to better characterize the shape of multimodal posterior spaces than any individual model. Finally, we describe how the BIC approximations employed in the BMA and IBMA algorithms can be replaced by an EBIR calculation of equal time complexity and illustrate the departure of the BIC approximation from the exact Bayesian inference of EBIR. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models
This article describes a method for efficient posterior simulation for Bayesian variable selection in Generalized Linear Models with many regressors but few observations. A proposal on model space is described which contains a tuneable parameter. An adaptive approach to choosing this tuning parameter is described which allows automatic, efficient computation in these models. The method is appli...
متن کاملBayesian variable selection in quantile regression
In many applications, interest focuses on assessing relationships between predictors and the quantiles of the distribution of a continuous response. For example, in epidemiology studies, cutoffs to define premature delivery have been based on the 10th percentile of the distribution for gestational age at delivery. Using quantile regression, one can assess how this percentile varies with predict...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملExploiting sparsity and sharing in probabilistic sensor data models
Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...
متن کامل2011 / 22 VAR forecasting using Bayesian variable selection
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012